Inference for Difference Between Many Proportions

Dr. Ab Mosca (they/them)

Slides based off slides courtesy of OpenIntro and John McGreedy of Johns Hopkins University

Plan for Today

- Chi-Square Test of Independence
- Goodness of Fit

Chi-Square test of Goodness of Fit (GOF)

Weldon's dice

- Walter Frank Raphael Weldon (1860 -1906), was an English evolutionary biologist and a founder of biometry. He was the joint founding editor of Biometrika, with Francis Galton and Karl Pearson.
- In 1894, he rolled 12 dice 26,306 times, and recorded the number of 5s or 6s (which he considered to be a success).

 It was observed that 5s or 6s occurred more often than expected, and Pearson hypothesized that this was probably due to the construction of the dice. Most inexpensive dice have hollowed-out pips, and since opposite sides add to 7, the face with 6 pips is lighter than its opposing face, which has only 1 pip.

Labby's dice

 In 2009, Zacariah Labby (U of Chicago), repeated Weldon's experiment using a homemade dice-throwing, pip counting machine.

www.youtube.com/watch?v=95EErdouO2w

- The rolling-imaging process took about 20 seconds per roll.
- Each day there were ~150 images to process manually.
- At this rate Weldon's experiment was repeated in a little more than six full days.

Labby's dice (cont.)

- Labby did not actually observe the same phenomenon that Weldon observed (higher frequency of 5s and 6s).
- Automation allowed Labby to collect more data than Weldon did in 1894, instead of recording "successes" and "failures", Labby recorded the individual number of pips

Expected counts

Labby rolled 12 dice 26,306 times. If each side is equally likely to come up, how many 1s, 2s, ..., 6s would he expect to have observed?

(a) 1/6 (b) 12/6 (c) 26,306 / 6 (d) 12 x 26,306 / 6

Expected counts

Labby rolled 12 dice 26,306 times. If each side is equally likely to come up, how many 1s, 2s, ..., 6s would he expect to have observed?

(a) 1/6 (b) 12 / 6 (c) 26,306 / 6 (d) 12 x 26,306 / 6 = 52,612 Odds of 1's, 2's etc. on one roll for one die: 1/6

Odds of 1's, 2's etc. on one roll for 12 dice: 1/6 * 12 = 12/6

Expected number of 1's, 2's etc. for 26,306 rolls of 12 dice: 12/6 * 26306

Summarizing Labby's results

The table below shows the observed and expected counts from Labby's experiment.

Outcome	Observed	Expected	
1	53,222	52,612	
2	52,118	52,612	
3	52,465	52,612	
4	52,338	52,612	
5	52,244	52,612	
6	53,285	52,612	
Total	315,672	315,672	

Summarizing Labby's results

The table below shows the observed and expected counts from Labby's experiment.

Outcome	Observed	Expected	
1	53,222	52,612	
2	52,118	52, <mark>61</mark> 2	
3	52,465	52,612	
4	52,338	52,612	
5	52,244	52,612	
6	53,285	52,612	
Total	315,672	315,672	

Why are the expected counts the same for all outcomes but the observed counts are different? Is there a significant inconsistency between the observed and expected counts?

Summarizing Labby's results

The table below shows the observed and expected counts from Labby's experiment.

Outcome	Observed	Expected	
1	53,222	52,612	
2	52,118	52,612	
3	52,465	52,612	
4	52,338	52,612	
5	52,244	52,612	
6	53,285	52,612	
Total	315,672	315,672	

Why are the expected counts the same for all outcomes but the observed counts are different? Is there a significant inconsistency between the observed and expected counts?

We can answer this question with a Chi-squared GOF test

Setting the hypotheses

Do these data provide convincing evidence of an inconsistency between the observed and expected counts?

Setting the hypotheses

Do these data provide convincing evidence of an inconsistency between the observed and expected counts?

 H_0 : There is no inconsistency between the observed and the expected counts. The observed counts follow the same distribution as the expected counts.

 H_A : There is an inconsistency between the observed and the expected counts. The observed counts *do not* follow the same distribution as the expected counts. (There is a bias in which side comes up on the roll of a die.)

Evaluating the hypotheses

• To evaluate these hypotheses, we quantify how different the observed counts are from the expected counts.

Evaluating the hypotheses

- To evaluate these hypotheses, we quantify how different the observed counts are from the expected counts.
- Large deviations from what would be expected based on sampling variation (chance) alone provide strong evidence for the alternative hypothesis.

Evaluating the hypotheses

- To evaluate these hypotheses, we quantify how different the observed counts are from the expected counts.
- Large deviations from what would be expected based on sampling variation (chance) alone provide strong evidence for the alternative hypothesis.
- This is called a *goodness of fit* test since we're evaluating how well the observed data fit the expected distribution.

Chi-square statistic

When dealing with counts and investigating how far the observed counts are from the expected counts, we use a new test statistic called the *chi-square* (χ^2) statistic.

Chi-square statistic

When dealing with counts and investigating how far the observed counts are from the expected counts, we use a new test statistic called the *chi-square* (χ^2) statistic.

$$\chi^2 = \sum_{i=1}^k \frac{(O - E)^2}{E}$$
 where k = total number of cells

$\chi^2 = \sum_{k=1}^{k} \frac{(O - E)^2}{E}$	Outcome	Observed	Expected	$\frac{(O-E)^2}{E}$
where k = total	1	53,222	52,612	$\frac{(53,222-52,612)^2}{52,612} = 7.07$
number of cells	2	52,118	52,612	
	3	52,465	52,612	
	4	52,338	52,612	
	5	52,244	52,612	
	6	53,285	52,612	
	Total	315,672	315,672	

Outcome	Observed	Expected	$\frac{(O-E)^2}{E}$
1	53,222	52,612	$\frac{(53,222-52,612)^2}{52,612} = 7.07$
2	52,118	52,612	$\frac{(52,118-52,612)^2}{52,612} = 4.64$
3	52,465	52,612	
4	52,338	52,612	
5	52,244	52,612	
6	53,285	52, <mark>61</mark> 2	
Total	315,672	315,672	

	1		
Outcome	Observed	Expected	$\frac{(O-E)^2}{E}$
1	53,222	52,612	$\frac{(53,222-52,612)^2}{52,612} = 7.07$
2	52,118	52,612	$\frac{(52,118-52,612)^2}{52,612} = 4.64$
3	52,465	52,612	
4	52,338	52,612	Calculate the chi-squared statistic
5	52,244	52, <mark>61</mark> 2	
6	53,285	52,612	
Total	315,672	315,672	

Outcome	Observed	Expected	$\frac{(O-E)^2}{E}$
1	53,222	52,612	$\frac{(53,222-52,612)^2}{52,612} = 7.07$
2	52,118	52,612	$\frac{(52,118-52,612)^2}{52,612} = 4.64$
3	52,465	52,612	$\frac{(52,465-52,612)^2}{52,612} = 0.41$
4	52,338	52,612	$\frac{(52,338-52,612)^2}{52,612} = 1.43$
5	52,244	52,612	$\frac{(52,244-52,612)^2}{52,612} = 2.57$
6	53,285	52, <mark>61</mark> 2	$\frac{(53,285-52,612)^2}{52,612} = 8.61$
Total	315,672	315,672	24.73

The chi-square distribution

• In order to determine if the χ^2 statistic we calculated is considered unusually high or not we need to first describe its distribution.

The chi-square distribution

- In order to determine if the χ^2 statistic we calculated is considered unusually high or not we need to first describe its distribution.
- The chi-square distribution has just one parameter called *degrees of freedom (df)*, which influences the shape, center, and spread of the distribution.

The chi-square distribution

- In order to determine if the χ^2 statistic we calculated is considered unusually high or not we need to first describe its distribution.
- The chi-square distribution has just one parameter called *degrees of freedom (df)*, which influences the shape, center, and spread of the distribution.

Remember

So far we've seen three other continuous distributions:

- → Z (normal) distribution: unimodal and symmetric with two parameters: mean and standard deviation
- → T distribution: unimodal and symmetric with one parameter: degrees of freedom
- → F distribution: unimodal and right skewed with two parameters: degrees of freedom or numerator (between group variance) and denominator (within group variance)

Practice

Which of the following is false?

As the df increases,

- (a) the center of the χ^2 distribution increases as well
- (b) the variability of the χ^2 distribution increases as well
- (c) the shape of the χ^2 distribution becomes more skewed (less like a normal)

Practice

Which of the following is false?

As the df increases,

- (a) the center of the χ^2 distribution increases as well
- (b) the variability of the χ^2 distribution increases as well
- (c) the shape of the χ^2 distribution becomes more skewed (less like a normal)

Finding areas under the chi-square curve

p-value = tail area under the chi-square distribution (as usual)

Finding areas under the chi-square curve

- p-value = tail area under the chi-square distribution (as usual)
- For this we can use technology, or a *chi-square probability table*.

Finding areas under the chi-square curve

Finding areas under the chi-square curve (cont.)

Upper	tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df	1	1.07	1.64	2.71	3.84	5.41	6.63	7.88	10.83
	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
	3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
	4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52
	6	7.23	8.56	10.64	12.59	15.03	16.81	18.55	22.46
	7	8.38	9.80	12.02	14.07	16.62	18.48	20.28	24.32

Finding areas under the chi-square curve (cont.)

Upper	tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df	1	1.07	1.64	2.71	3.84	5.41	6.63	7.88	10.83
	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
	3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
	4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52
	6	7.23	8.56	10.64	12.59	15.03	16.81	18.55	22.46
	7	8.38	9.80	12.02	14.07	16.62	18.48	20.28	24.32

Finding areas under the chi-square curve (cont.)

Back to Labby's dice

• The research question was: Do these data provide convincing evidence of an inconsistency between the observed and expected counts?

Back to Labby's dice

- The research question was: Do these data provide convincing evidence of an inconsistency between the observed and expected counts?
- The hypotheses were:

 H_0 : There is no inconsistency between the observed and the expected counts. The observed counts follow the same distribution as the expected counts.

 H_A : There is an inconsistency between the observed and the expected counts. The observed counts *do not* follow the same distribution as the expected counts. There is a bias in which side comes up on the roll of a die.

Back to Labby's dice

- The research question was: Do these data provide convincing evidence of an inconsistency between the observed and expected counts?
- The hypotheses were:

 H_0 : There is no inconsistency between the observed and the expected counts. The observed counts follow the same distribution as the expected counts.

 H_A : There is an inconsistency between the observed and the expected counts. The observed counts *do not* follow the same distribution as the expected counts. There is a bias in which side comes up on the roll of a die.

• We had calculated a test statistic of $\chi^2 = 24.67$.
Back to Labby's dice

- The research question was: Do these data provide convincing evidence of an inconsistency between the observed and expected counts?
- The hypotheses were:

 H_0 : There is no inconsistency between the observed and the expected counts. The observed counts follow the same distribution as the expected counts.

 H_A : There is an inconsistency between the observed and the expected counts. The observed counts *do not* follow the same distribution as the expected counts. There is a bias in which side comes up on the roll of a die.

- We had calculated a test statistic of $\chi^2 = 24.67$.
- All we need is the df and we can calculate the tail area (the p-value) and make a decision on the hypotheses.

Degrees of freedom for a goodness of fit test

• When conducting a goodness of fit test to evaluate how well the observed data follow an expected distribution, the degrees of freedom are calculated as the number of cells (*k*) minus 1.

df = k - 1

Degrees of freedom for a goodness of fit test

• When conducting a goodness of fit test to evaluate how well the observed data follow an expected distribution, the degrees of freedom are calculated as the number of cells (*k*) minus 1.

df = k - 1

• For dice outcomes, k = 6, therefore

df = 6 - 1 = 5

Finding a p-value for a chi-square test

The *p*-value for a chi-square test is defined as the *tail area above the calculated test statistic*.

Upper	tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df	1	1.07	1.64	2.71	3.84	5.41	6.63	7.88	10.83
	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
	3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
	4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52
	6	7.23	8.56	10.64	12.59	15.03	16.81	18.55	22.46
	7	8.38	9.80	12.02	14.07	16.62	18.48	20.28	24.32

Finding a p-value for a chi-square test

The *p*-value for a chi-square test is defined as the *tail area above the calculated test statistic*.

p-value = $P(\chi^2_{df=5} > 24.67)$ is less than 0.001

Conclusion of the hypothesis test

We calculated a p-value less than 0.001. At 5% significance level, what is the conclusion of the hypothesis test?

- (a)Reject H_0 , the data provide convincing evidence that the dice are fair.
- (b)Reject H_0 , the data provide convincing evidence that the dice are biased.
- (c) Fail to reject H_0 , the data provide convincing evidence that the dice are fair.
- (d)Fail to reject H_0 , the data provide convincing evidence that the dice are biased.

Conclusion of the hypothesis test

We calculated a p-value less than 0.001. At 5% significance level, what is the conclusion of the hypothesis test?

- (a)Reject H_0 , the data provide convincing evidence that the dice are fair.
- (b) Reject H₀, the data provide convincing evidence that the dice are biased.
- (c) Fail to reject H_0 , the data provide convincing evidence that the dice are fair.
- (d)Fail to reject H_0 , the data provide convincing evidence that the dice are biased.

Turns out...

- The 1-6 axis is consistently shorter than the other two (2-5 and 3-4), thereby supporting the hypothesis that the faces with one and six pips are larger than the other faces.
- Pearson's claim that 5s and 6s appear more often due to the carvedout pips is not supported by these data.
- Dice used in casinos have flush faces, where the pips are filled in with a plastic of the same density as the surrounding material and are precisely balanced.

Recap: p-value for a chi-square test

- The p-value for a chi-square test is defined as the tail area *above* the calculated test statistic.
- This is because the test statistic is always positive, and a higher test statistic means a stronger deviation from the null hypothesis.

1. Independence: Each case that contributes a count to the table must be independent of all the other cases in the table.

- 1. Independence: Each case that contributes a count to the table must be independent of all the other cases in the table.
- 2. Sample size: Each particular scenario (i.e. cell) must have at least 5 *expected* cases.

- 1. Independence: Each case that contributes a count to the table must be independent of all the other cases in the table.
- 2. Sample size: Each particular scenario (i.e. cell) must have at least 5 *expected* cases.
- *3.* df > 1: Degrees of freedom must be greater than 1.

- 1. Independence: Each case that contributes a count to the table must be independent of all the other cases in the table.
- 2. Sample size: Each particular scenario (i.e. cell) must have at least 5 *expected* cases.
- 3. df > 1: Degrees of freedom must be greater than 1.

Failing to check conditions may unintentionally affect the test's error rates.

Chi-Square Test of Independence

Motivation: Popular kids

In the dataset popular, students in grades 4-6 were asked whether good grades, athletic ability, or popularity was most important to them. A two-way table separating the students by grade and by choice of most important factor is shown below. Do these data provide evidence to suggest that goals vary by grade?

	Grades	Popular	Sports
4 ^{<i>th</i>}	63	31	25
5^{th}	88	55	33
6 ^{<i>th</i>}	96	55	32

Chi-square test of independence

- The hypotheses are:
 - H_0 : Grade and goals are independent. Goals do not vary by grade.
 - H_A : Grade and goals are dependent. Goals vary by grade.

Chi-square test of independence

- The hypotheses are:
 - H_0 : Grade and goals are independent. Goals do not vary by grade.
 - H_A : Grade and goals are dependent. Goals vary by grade.
- The test statistic is calculated as

$$\chi_{df}^{2} = \sum_{i=1}^{k} \frac{(O - E)^{2}}{E} \qquad \qquad df = (R - 1) * (C - 1)$$

where k is the number of cells, R is the number of rows, and C is the number of columns in our contingency table, O is observed counts, and E is expected counts

Note: we calculate df differently for one-way and two-way tables.

Total

Total

Evnortad

		Observed			Expected					
Factor					Factor					
Grade	Grades	Popular	Sports	Total	Grade	Grades	Popular	Sports	Total	
4 th	63	31	25	119	4 th	61	35	23	119	
5 th	88	55	33	176	5 th	91	52	33	176	
6 th	96	55	32	183	6 th	95	54	34	183	
Total	247	141	90	478	Total	247	141	90	478	

$$\chi_{df}^{2} = \sum_{i=1}^{k} \frac{(O - E)^{2}}{E} \qquad df = (R - 1) * (C - 1)$$

What is the Chi-squared statistic?

Expected

		Observed			Expected				
Factor					Factor				
Grade	Grades	Popular	Sports	Total	Grade	Grades	Popular	Sports	Total
4 th	63	31	25	119	4 th	61	35	23	119
5 th	88	55	33	176	5 th	91	52	33	176
6 th	96	55	32	183	6 th	95	54	34	183
Total	247	141	90	478	Total	247	141	90	478

$$\chi_{df}^{2} = \sum_{i=1}^{k} \frac{(O-E)^{2}}{E} df = (R-1) * (C-1)$$
$$\chi_{df}^{2} = \sum_{i=1}^{9} \frac{(O-E)^{2}}{E}$$
$$= \frac{(63-61)^{2}}{61} + \frac{(31-35)^{2}}{35} + \frac{(25-23)^{2}}{23} + \frac{(88-91)^{2}}{91} + \frac{(55-52)^{2}}{52} + \frac{(33-33)^{2}}{33} + \frac{(96-95)^{2}}{95} + \frac{(55-54)^{2}}{54} + \frac{(32-34)^{2}}{34}$$
$$= 1.3121$$

Expected

	Observed			Expected					
	/			Factor		,			
Grades	Popular	Sports	Total	Grade	Grades	Popular	Sports	Total	
63	31	25	119	4 th	61	35	23	119	
88	55	33	176	5 th	91	52	33	176	
96	55	32	183	6 th	95	54	34	183	
247	141	90	478	Total	247	141	90	478	
	Grades 63 88 96 247	Observed Grades Popular 63 31 88 555 96 55 247 141	Observed Grades Popular Sports 63 31 25 88 555 333 96 555 32 247 141 90	ObservedGradesPopularSportsTotal63312511988553317696553218324714190478	Observed Factor Grades Popular Sports Total Grade 63 31 25 119 4 th 88 55 33 176 5 th 96 55 32 183 6 th 247 141 90 478 Total	Observed Factor Grades Popular Sports Total Factor 63 31 25 119 4 th 61 88 55 33 176 5 th 91 96 55 32 183 6 th 95 247 141 90 478 Total 247	Observed Expected Grades Popular Sports Total Factor Grades Popular 63 31 25 119 4 th 61 35 88 55 33 176 5 th 91 52 96 55 32 183 6 th 95 54 247 141 90 478 Total 247 141	Observed Expected Grades Popular Sports Total Factor Grades Popular Sports 63 31 25 119 4 th 61 35 23 88 555 33 176 5 th 91 52 33 96 55 32 183 6 th 95 54 34 247 141 90 478 Total 247 141 90	

$$\chi_{df}^{2} = \sum_{i=1}^{k} \frac{(O - E)^{2}}{E} \qquad df = (R - 1) * (C - 1)$$

 $\chi^2_{df} = 1.3121$

What are the degrees of freedom?

Expected

		Observed								_
Factor					Factor)
Grade	Grades	Popular	Sports	Total	Grade	Grades	Popular	Sports	Total	
4 th	63	31	25	119	4 th	61	35	23	119	
5 th	88	55	33	176	5 th	91	52	33	176	
6 th	96	55	32	183	6 th	95	54	34	183	
Total	247	141	90	478	Total	247	141	90	478	_

$$\chi_{df}^{2} = \sum_{i=1}^{k} \frac{(O - E)^{2}}{E} \qquad df = (R - 1) * (C - 1)$$

 $\chi^2_{df} = 1.3121$ df = (3 - 1) * (3 - 1) = 4

Observed

Calculating the p-value

Which of the following is the correct p-value for this hypothesis test?

 $\chi^2_{df} = 1.3121$

(a) more than 0.3
(b) between 0.3 and 0.2
(c) between 0.2 and 0.1
(d) between 0.1 and 0.05
(e) less than 0.001

df = 4

Upper	tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df	1	1.07	1.64	2.71	3.84	5.41	6.63	7.88	10.83
	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
	3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
	4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52

Calculating the p-value

Which of the following is the correct p-value for this hypothesis test?

 $\chi^2_{df} = 1.3121$

(a) more than 0.3

df = 4

(b) between 0.3 and 0.2(c) between 0.2 and 0.1(d) between 0.1 and 0.05(e) less than 0.001

Upper	tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df	1	1.07	1.64	2.71	3.84	5.41	6.63	7.88	10.83
	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
	3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
		4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52

Conclusion

Do these data provide evidence to suggest that goals vary by grade?

p - value > 0.3

 H_0 : Grade and goals are independent. Goals do not vary by grade. H_A : Grade and goals are dependent. Goals vary by grade.

Conclusion

Do these data provide evidence to suggest that goals vary by grade?

 $p - value > 0.3, \alpha = 0.05$

 H_0 : Grade and goals are independent. Goals do not vary by grade. H_A : Grade and goals are dependent. Goals vary by grade.

Since the p-value is large, we fail to reject H_0 . The data do not provide convincing evidence that grade and goals are dependent. It doesn't appear that goals vary by grade.

Practice

2009 Iran Election

There was lots of talk of election fraud in the 2009 Iran election. We'll compare the data from a poll conducted before the election (observed data) to the reported votes in the election to see if the two follow the same distribution.

	Observed # of	Reported % of
Candidate	voters in poll	votes in election
(1) Ahmedinajad	338	63.29%
(2) Mousavi	136	34.10%
(3) Minor candidates	30	2.61%
Total	504	100%

2009 Iran Election

There was lots of talk of election fraud in the 2009 Iran election. We'll compare the data from a poll conducted before the election (observed data) to the reported votes in the election to see if the two follow the same distribution.

	Observed # of	Reported % of
Candidate	voters in poll	votes in election
(1) Ahmedinajad	338	63.29%
(2) Mousavi	136	34.10%
(3) Minor candidates	30	2.61%
Total	504	100%
	\downarrow	\downarrow
	observed	expected
		distribution

What are the hypotheses for testing if the distributions of reported and polled votes are different?
Hypotheses

What are the hypotheses for testing if the distributions of reported and polled votes are different?

 H_0 : The observed counts from the poll follow the same distribution as the reported votes.

 H_A : The observed counts from the poll do not follow the same distribution as the reported votes.

	Observed # of	Reported % of	Expected # of
Candidate	voters in poll	votes in election	votes in poll
(1) Ahmedinajad	338	63.29%	$504 \times 0.6329 = 319$
(2) Mousavi	136	34.10%	$504 \times 0.3410 = 172$
(3) Minor candidates	30	2.61%	$504 \times 0.0261 = 13$
Total	504	100%	504

	Observed # of	Reported % of	Expected # of
Candidate	voters in poll	votes in election	votes in poll
(1) Ahmedinajad	338	63.29%	504 × 0.6329 = 319
(2) Mousavi	136	34.10%	$504 \times 0.3410 = 172$
(3) Minor candidates	30	2.61%	$504 \times 0.0261 = 13$
Total	504	100%	504

$$\frac{(O_1 - E_1)^2}{E_1} = \frac{(338 - 319)^2}{319} = 1.13$$

	Observed # of	Reported % of	Expected # of
Candidate	voters in poll	votes in election	votes in poll
(1) Ahmedinajad	338	63.29%	504 × 0.6329 = 319
(2) Mousavi	136	34.10%	$504 \times 0.3410 = 172$
(3) Minor candidates	30	2.61%	$504 \times 0.0261 = 13$
Total	504	100%	504

$$\frac{(O_1 - E_1)^2}{E_1} = \frac{(338 - 319)^2}{319} = 1.13$$
$$\frac{(O_2 - E_2)^2}{E_2} = \frac{(136 - 172)^2}{172} = 7.53$$

	Observed # of	Reported % of	Expected # of
Candidate	voters in poll	votes in election	votes in poll
(1) Ahmedinajad	338	63.29%	504 × 0.6329 = 319
(2) Mousavi	136	34.10%	$504 \times 0.3410 = 172$
(3) Minor candidates	30	2.61%	$504 \times 0.0261 = 13$
Total	504	100%	504

$$\frac{(O_1 - E_1)^2}{E_1} = \frac{(338 - 319)^2}{319} = 1.13$$
$$\frac{(O_2 - E_2)^2}{E_2} = \frac{(136 - 172)^2}{172} = 7.53$$
$$\frac{(O_2 - E_2)^2}{E_2} = \frac{(30 - 13)^2}{13} = 22.23$$

	Observed # of	Reported % of	Expected # of
Candidate	voters in poll	votes in election	votes in poll
(1) Ahmedinajad	338	63.29%	504 × 0.6329 = 319
(2) Mousavi	136	34.10%	$504 \times 0.3410 = 172$
(3) Minor candidates	30	2.61%	$504 \times 0.0261 = 13$
Total	504	100%	504

$$\frac{(O_1 - E_1)^2}{E_1} = \frac{(338 - 319)^2}{319} = 1.13$$
$$\frac{(O_2 - E_2)^2}{E_2} = \frac{(136 - 172)^2}{172} = 7.53$$
$$\frac{(O_2 - E_2)^2}{E_2} = \frac{(30 - 13)^2}{13} = 22.23$$
$$\chi^2_{df=3-1=2} = 30.89$$

Conclusion

Based on these calculations what is the conclusion of the hypothesis test?

(a) p-value is low, H₀ is rejected. The observed counts from the poll do <u>not</u> follow the same distribution as the reported votes.
(b) p-value is high, H₀ is not rejected. The observed counts from the poll follow the same distribution as the reported votes.
(c) p-value is low, H₀ is rejected. The observed counts from the poll follow the same distribution as the reported votes
(d) p-value is low, H₀ is not rejected. The observed counts from the poll follow the same distribution as the reported votes

Conclusion

Based on these calculations what is the conclusion of the hypothesis test?

(a) p-value is low, H_0 is rejected. The observed counts from the poll do <u>not</u> follow the same distribution as the reported votes.

(b) p-value is high, H₀ is not rejected. The observed counts from the poll follow the same distribution as the reported votes.
(c) p-value is low, H₀ is rejected. The observed counts from the poll follow the same distribution as the reported votes
(d) p-value is low, H₀ is not rejected. The observed counts from the poll do *not* follow the same distribution as the reported votes.