Inference for a Difference of Two Proportions

Dr. Ab Mosca (they/them)

Slides based off slides courtesy of OpenIntro and John McGreedy of Johns Hopkins University Inference for Proportions

- Last time we looked at CI's for one-sample proportions, and hypothesis testing for one-sample proportions
- Today we'll look at testing for a difference between two proportions

Melting ice cap

Scientists predict that global warming may have big effects on the polar regions within the next 100 years. One of the possible effects is that the northern ice cap may completely melt. Would this bother you a great deal, some, a little, or not at all if it actually happened?

(a) A great deal(b) Some(c) A little(d) Not at all

Results from the GSS

The GSS asks the same question, below are the distributions of responses from the 2010 GSS as well as from a group of introductory statistics students at Duke University:

	GSS	Duke
A great deal	454	69
Some	124	30
A little	52	4
Not at all	50	2
Total	680	105

Parameter and point estimate

• *Parameter of interest*: Difference between the proportions of *all* Duke students and *all* Americans who would be bothered a great deal by the northern ice cap completely melting.

p_{Duke} - p_{US}

Parameter and point estimate

• *Parameter of interest*: Difference between the proportions of *all* Duke students and *all* Americans who would be bothered a great deal by the northern ice cap completely melting.

p_{Duke} - p_{US}

• *Point estimate*: Difference between the proportions of *sampled* Duke students and *sampled* Americans who would be bothered a great deal by the northern ice cap completely melting.

 \hat{p}_{Duke} - \hat{p}_{US}

• The details are the same as before...

- The details are the same as before...
- CI: point estimate ± margin of error

- The details are the same as before...
- CI: point estimate ± margin of error
- HT: Use Z = (*point estimate null value*) / SE to find appropriate p-value.

- The details are the same as before...
- CI: point estimate ± margin of error
- HT: Use *Z* = (*point estimate null value*) / *SE* to find appropriate p-value.
- We just need the appropriate standard error of the point estimate $(SE_{\hat{p}_{Duke}-\hat{p}_{US}})$, which is the only new concept.

- The details are the same as before...
- CI: point estimate ± margin of error
- HT: Use Z = (point estimate null value) / SE to find appropriate p-value.
- We just need the appropriate standard error of the point estimate $(SE_{\hat{p}_{Duke}-\hat{p}_{US}})$, which is the only new concept.

Standard error of the difference between two sample proportions

$$SE_{(\hat{p}_1-\hat{p}_2)} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

- 1. Independence within groups:
 - The US group is sampled randomly and we're assuming that the Duke group represents a random sample as well.

- 1. Independence within groups:
 - The US group is sampled randomly and we're assuming that the Duke group represents a random sample as well.
 - n_{Duke} < 10% of all Duke students and 680 < 10% of all Americans.

- 1. Independence within groups:
 - The US group is sampled randomly and we're assuming that the Duke group represents a random sample as well.
 - n_{Duke} < 10% of all Duke students and 680 < 10% of all Americans.

We can assume that the attitudes of Duke students in the sample are independent of each other, and attitudes of US residents in the sample are independent of each other as well.

- 1. Independence within groups:
 - The US group is sampled randomly and we're assuming that the Duke group represents a random sample as well.
 - n_{Duke} < 10% of all Duke students and 680 < 10% of all Americans.

We can assume that the attitudes of Duke students in the sample are independent of each other, and attitudes of US residents in the sample are independent of each other as well.

2. Independence between groups:

The sampled Duke students and the US residents are independent of each other.

- 1. Independence within groups:
 - The US group is sampled randomly and we're assuming that the Duke group represents a random sample as well.
 - n_{Duke} < 10% of all Duke students and 680 < 10% of all Americans.

We can assume that the attitudes of Duke students in the sample are independent of each other, and attitudes of US residents in the sample are independent of each other as well.

2. Independence between groups:

The sampled Duke students and the US residents are independent of each other.

3. Success-failure:

At least 10 observed successes and 10 observed failures in the two groups.

Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap ($p_{Duke} - p_{US}$).

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680

Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap ($p_{Duke} - p_{US}$).

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680

What is \hat{p}_{Duke} and \hat{p}_{US} ?

Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap ($p_{Duke} - p_{US}$).

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
<i>p</i>	0.657	0.668

What is \hat{p}_{Duke} and \hat{p}_{US} ?

Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap ($p_{Duke} - p_{US}$).

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
p	0.657	0.668

What is the CI?

$$CI = point \ estimate \ \pm z * \times SE$$

$$SE_{(\hat{p}_1 - \hat{p}_2)} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap ($p_{Duke} - p_{US}$).

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
\hat{p}	0.657	0.668

What is the CI?

 $CI = point \ estimate \ \pm z * \times SE \qquad SE_{(\hat{p}_1 - \hat{p}_2)} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$ $(\hat{p}_{Duke} - \hat{p}_{US}) \pm z^* \times \sqrt{\frac{\hat{p}_{Duke}(1 - \hat{p}_{Duke})}{n_{Duke}} + \frac{\hat{p}_{US}(1 - \hat{p}_{US})}{n_{US}}}$ $= (0.657 - 0.668) \pm 1.96 \times \sqrt{\frac{0.657 \times 0.343}{105} + \frac{0.668 \times 0.332}{680}} = (-0.108, 0.086)$

Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap ($p_{Duke} - p_{US}$).

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
\hat{p}	0.657	0.668

What is the CI?

= (-0.108, 0.086)

What does this tell us about the population?

Construct a 95% confidence interval for the difference between the proportions of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap ($p_{Duke} - p_{US}$).

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
\hat{p}	0.657	0.668

What is the CI?

= (-0.108, 0.086)

What does this tell us about the population?

The difference between the proportion of Duke students and all Americans who would be bothered a great deal by the melting of the northern ice cap is between -11 and 9 percent.

Practice: Hypothesis Testing

Which of the following is the correct set of hypotheses for testing if the proportion of all Duke students who would be bothered a great deal by the melting of the northern ice cap differs from the proportion of all Americans who do?

- (a) $H_0: p_{Duke} = p_{US}$ $H_A: p_{Duke} \neq p_{US}$
- (b) $H_0: \hat{p}_{Duke} = \hat{p}_{US}$ $H_A: \hat{p}_{Duke} \neq \hat{p}_{US}$
- (c) $H_0: p_{Duke} p_{US} = 0$ $H_A: p_{Duke} - p_{US} \neq 0$
- (d) $H_0: p_{Duke} = p_{US}$ $H_A: p_{Duke} < p_{US}$

Practice: Hypothesis Testing

Which of the following is the correct set of hypotheses for testing if the proportion of all Duke students who would be bothered a great deal by the melting of the northern ice cap differs from the proportion of all Americans who do?

- (a) $H_0: p_{Duke} = p_{US}$ $H_A: p_{Duke} \neq p_{US}$
- (b) $H_0: \hat{p}_{Duke} = \hat{p}_{US}$ $H_A: \hat{p}_{Duke} \neq \hat{p}_{US}$
- (c) $H_0: p_{Duke} p_{US} = 0$ $H_A: p_{Duke} - p_{US} \neq 0$
- (d) $H_0: p_{Duke} = p_{US}$ $H_A: p_{Duke} < p_{US}$

Both (a) and (c) are correct.

Flashback to working with one proportion

• When constructing a confidence interval for a population proportion, we check if the *observed* number of successes and failures are at least 10.

$$n\hat{p} \ge 10$$
 $n^*(1 - \hat{p}) \ge 10$

Flashback to working with one proportion

• When constructing a confidence interval for a population proportion, we check if the *observed* number of successes and failures are at least 10.

$$n\hat{p} \ge 10$$
 $n^*(1 - \hat{p}) \ge 10$

• When conducting a hypothesis test for a population proportion, we check if the *expected* number of successes and failures are at least 10.

$$np_0 \ge 10$$
 $n^*(1 - p_0) \ge 10$

Pooled estimate of a proportion

• In the case of comparing two proportions where H_0 : $p_1 = p_2$, there isn't a given null value we can use to calculated the *expected* number of successes and failures in each sample.

Pooled estimate of a proportion

- In the case of comparing two proportions where H_0 : $p_1 = p_2$, there isn't a given null value we can use to calculated the *expected* number of successes and failures in each sample.
- Therefore, we need to first find a common (*pooled*) proportion for the two groups, and use that in our analysis.

Pooled estimate of a proportion

- In the case of comparing two proportions where H_0 : $p_1 = p_2$, there isn't a given null value we can use to calculated the *expected* number of successes and failures in each sample.
- Therefore, we need to first find a common (*pooled*) proportion for the two groups, and use that in our analysis.
- This simply means finding the proportion of total successes among the total number of observations.

Pooled estimate of a proportion

$$\hat{p} = \frac{\# of \ successes_1 + \# of \ successes_2}{n_1 + n_2}$$

Practice

p

Calculate the estimated <u>pooled proportion</u> of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap. Which sample proportion $(\hat{p}_{Duke} \text{ or } \hat{p}_{US})$ the pooled estimate is closer to? Why?

	Data	Duke	US
	A great deal	69	454
	Not a great deal	36	226
	Total	105	680
	\hat{p}	0.657	0.668
:	$=$ $\frac{\# of successes}{}$	s ₁ + # of	successes ₂

 $n_1 + n_2$

Practice

Calculate the estimated <u>pooled proportion</u> of Duke students and Americans who would be bothered a great deal by the melting of the northern ice cap. Which sample proportion $(\hat{p}_{Duke} \text{ or } \hat{p}_{US})$ the pooled estimate is closer to? Why?

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
\hat{p}	0.657	0.668
Ш. С.		

$$\hat{p} = \frac{\# of \ successes_1 + \# of \ successes_2}{n_1 + n_2}$$
$$= \frac{69 + 454}{105 + 680} = \frac{523}{785} = 0.666$$

Practice: Hypothesis Testing

Do these data suggest that the proportion of all Duke students who would be bothered a great deal by the melting of the northern ice cap differs from the proportion of all Americans who do? *Calculate the test statistic, the pvalue, and interpret your conclusion in context of the data.*

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
\hat{p}	0.657	0.668

$$H_{0}: p_{Duke} - p_{US} = 0$$

$$H_{A}: p_{Duke} - p_{US} \neq 0$$

$$Z = \frac{obs - null}{SE}$$

$$SE = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}}$$

Practice: Hypothesis Testing

Do these data suggest that the proportion of all Duke students who would be bothered a great deal by the melting of the northern ice cap differs from the proportion of all Americans who do? *Calculate the test statistic, the pvalue, and interpret your conclusion in context of the data.*

Data	Duke	US
A great deal	69	454
Not a great deal	36	226
Total	105	680
\hat{p}	0.657	0.668

 $H_{0}: p_{Duke} - p_{US} = 0$ $H_{A}: p_{Duke} - p_{US} \neq 0$ $SE = \sqrt{\frac{0.657 (1 - 0.657)}{105} + \frac{0.668 (1 - 0.668)}{680}}{680}} = 0.0497$ $Z = \frac{obs - null}{SE}$ $Z = \frac{(0.657 - 0.668) - 0}{0.0497} = -0.221$ $SE = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}}$

Positive Z

		Second decimal place of Z								
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910 0.5948		0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293			0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
*For	*For $Z \ge 3.50$, the probability is greater than or equal to 0.9998.									

is Testing

of all Duke students who would the northern ice cap differs from calculate the test statistic, the pntext of the data.

Duke	US			
69	454			
36	226			
105	680			
0.657	0.668			

$$SE = \sqrt{\frac{0.657 (1 - 0.657)}{105} + \frac{0.668 (1 - 0.668)}{680}} = 0.0497$$

$$Z = \frac{(0.657 - 0.668) - 0}{0.0497} = -0.221$$

	Second decimal place of Z									
0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	$Z_{$
0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	-3.4
0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	
0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007	
0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010	-3.1
0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013	-3.0
0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019	-2.9 of all Duke atudanta wha would
0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026	$^{-2.8}_{-2.8}$ of all Duke students who would
0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	$\frac{-2.7}{2.6}$ the northern ice cap differs from
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0043	0.0044	0.0045	0.0047	-2.0
0.0048	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	<u>-2.5</u> Calculate the test statistic. the p-
0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082	-2.4
0.0084	0.0087	0.0089	0.0091	0.0094	0.0096	0.0099	0.0102	0.0104	0.0107	-2.3
0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139	-2.2
0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179	
0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228	-2.0
0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287	-1.9
0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359	-1.8
0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446	-1.7
0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548	-1.6
0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668	$\frac{-1.5}{-1.4}$ 41%
0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	
0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3
0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2
0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357	
0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	<u>-1.0</u> -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841	-0.9
0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119	-0.8
0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420	-0.7 (0.657 - 0.668) - 0
0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743	$\int_{-0.6}^{-0.6} Z = \frac{(0.657 - 0.668) - 0}{0.0107} = -0.221$
0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085	0.0497
0.3121	0.3156	0.3192	0.3228	0.3264	0.3300		0.3372		0.3446	-0.4
0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745		0.3821	-0.3
0.3859	0.3897	0.3936	0.3974	0.4013 0.4404	0.4052	$0.4090 \\ 0.4483$	$0.4129 \\ 0.4522$	and the second sec	0.4207	-0.2 -0.1
0.4247	$0.4286 \\ 0.4681$	0.4325 0.4721	0.4364 0.4761	$0.4404 \\ 0.4801$	0.4443	$0.4483 \\ 0.4880$			$0.4602 \\ 0.5000$	-0.1 -0.0
	$\frac{0.4081}{< -3.50}$								0.0000	

*For $Z \leq -3.50$, the probability is less than or equal to 0.0002.

			Seco	nd decin	nal place	of Z				
0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	
0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	-3.4
0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	
0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007	
0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010	-3.1
0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013	-3.0
0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019	
0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026	$^{-2.9}_{-2.8}$ of all Duke students who would
0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	$^{-2.7}_{-2.6}$: the northern ice cap differs from
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0043	0.0044	0.0045	0.0047	$_{-2.6}$ the northern ice cap differs from
0.0048	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	-2.5 calculate the test statistic, the p-
0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082	-2.4
0.0084	0.0087	0.0089	0.0091	0.0094	0.0096	0.0099	0.0102	0.0104	0.0107	-2.3
0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139	-2.2
0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179	-2.1
0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228	-2.0
0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287	-1.9
0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359	-1.8
0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446	-1.7
0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548	-1.6
0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668	
0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	<u>-1.4</u> 41%
0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3
0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2
0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357	-1.1
0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	
0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841	-0.9
0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119	-0.8
0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420	-0.7
0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743	$\int_{-0.6}^{-0.6} Z = \frac{(0.657 - 0.668) - 0}{0.0407} = -0.221$
0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085	-0.5 $Z = -0.221$ 0.0497
0.3121	0.3156	0.3192	0.3228	0.3264	0.3300	0.3336	0.3372	0.3409	0.3446	-0.4
0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	0.3783	0.3821	-0.3 We want a 2-tailed test
0.3859	0.3897	0.3936	0.3974	0.4013	0.4052	0.4090	0.4129	0.4168	0.4207	-0.2
0.4247	0.4286	0.4325	0.4364	0.4404	0.4443	0.4483	0.4522	0.4562	0.4602	-0.1
0.4641	0.4681	0.4721	0.4761	0.4801	0.4840	0.4880	0.4920	0.4960	0.5000	-0.0
*For Z	< -35	0 the \mathbf{p}_1	obabilit	v is less	than or	equal to	0.0002			

*For $Z \leq -3.50$, the probability is less than or equal to 0.0002.

			Seco	nd decin	nal place	of Z]	
0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	Z	
0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	-3.4	3.4
0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	-3.3	3.3 is Testing
0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007	-3.2	
0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010	-3.1	3.1
0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013	-3.0	3.0
0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019	-2.9	$\overline{2.9}$
0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026	-2.8	2.8
0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	-2.7	2.7
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0043	0.0044	0.0045	0.0047	-2.6	2.6
0.0048	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	-2.5	
0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082	-2.4	
0.0084	0.0087	0.0089	0.0091	0.0094	0.0096	0.0099	0.0102	0.0104	0.0107	-2.3	
0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139	-2.2	
0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179	-2.1	
0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228	-2.0	
0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287	-1.9	1.9
0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359	-1.8	
0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446	-1.7	
0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548	-1.6	
0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668	-1.5	
0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	-1.4	
0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3	
0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2	
0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357	-1.1	$\Lambda \Lambda \Lambda Q'$
0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	-1.0	1.0
0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841	-0.9	0.9
0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119	-0.8	
0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420	-0.7	
0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743	-0.6	
0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085	-0.5	
0.3121	0.3156	0.3192	0.3228	0.3264	0.3300		0.3372	0.3409	0.3446	-0.4	
0.3483	0.3520	0.3557	0.3594	0.3632	0.3669		0.3745	0.3783	0.3821	-0.3	
0.3859	0.3897	0.3936	0.3974	0.4013	0.4052		0.4129	0.4168	0.4207	-0.2	
0.4247	0.4286	0.4325	0.4364	0.4404	0.4443		0.4522	0.4562	0.4602	-0.1	
0.4641	0.4681	0.4721	0.4761	0.4801	0.4840	0.4880		0.4960	0.5000	-0.0	
[*] For Z	≤ -3.5	U, the pr	obabilit	y is less	than or	equal to	0.0002.				

			Seco	nd decin	nal place	of Z					
0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	Z	
0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	-3.4	
0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	-3.3	is Testing
0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007	-3.2	15 I COUNY
0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010	-3.1	
0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013	-3.0	
0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019	-2.9	
0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026	-2.8	
0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	-2.7	
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0043	0.0044	0.0045	0.0047	-2.6	
0.0048	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	-2.5	
0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082	-2.4	
0.0084	0.0087	0.0089	0.0091	0.0094	0.0096	0.0099	0.0102	0.0104	0.0107	-2.3	
0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139	-2.2	
0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179	-2.1	
0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228	-2.0	41% 41%
0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287	-1.9	
0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359	-1.8	
0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446	-1.7	
0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548	-1.6	
0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668	-1.5	-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	-1.4	
0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3	
0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2	$Z = \frac{(0.657 - 0.668) - 0}{0.0497} = -0.221$
0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357	-1.1	$Z = \frac{0.0497}{0.0497} = -0.221$
0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	-1.0	-
0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841	-0.9	
0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119	-0.8	p = 2 * 0.41 = 0.82
0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420	-0.7	
0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743	-0.6	If $\alpha = 0.05$, what does this result tell us?
0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085	-0.5	$\alpha = 0.05$, what does this result tell us?
0.3121	0.3156	0.3192	0.3228	0.3264	0.3300	0.3336	0.3372	0.3409	0.3446	-0.4	
0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	0.3783	0.3821	-0.3	
0.3859	0.3897	0.3936	0.3974	0.4013	0.4052	0.4090	0.4129	0.4168	0.4207	-0.2	
0.4247	0.4286	0.4325	0.4364	0.4404	0.4443	0.4483	0.4522	0.4562	0.4602	-0.1	
0.4641		0.4721	0.4761	0.4801	0.4840		0.4920	0.4960	0.5000	-0.0	
*For Z	≤ -3.50	0, the pr	obabilit	y is less	than or	equal to	0.0002.				

*For $Z \leq -3.50$, the probability is less than or equal to 0.0002.

			Seco	nd decin	nal place	of Z	_]	
0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	Z	
0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	-3.4	
0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	-3.3	is Testing
0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007	-3.2	13 1 C311114
0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010	-3.1	
0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013	-3.0	
0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019	-2.9	
0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026	-2.8	
0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	-2.7	
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0043	0.0044	0.0045	0.0047	-2.6	
0.0048	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	-2.5	
0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082	-2.4	
0.0084	0.0087	0.0089	0.0091	0.0094	0.0096	0.0099	0.0102	0.0104	0.0107	-2.3	
0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139	-2.2	
0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179	-2.1	
0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228	-2.0	41% 41%
0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287	-1.9	
0.0294	0.0301	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0351	0.0359	-1.8	
0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446	-1.7	
0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548	-1.6	
0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668	-1.5	-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.0681	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	-1.4	
0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3	
0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2	7 - (0.657 - 0.668) - 0 - 0.221
0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357	-1.1	$Z = \frac{(0.657 - 0.668) - 0}{0.0497} = -0.221$
0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	-1.0	-
0.1611	0.1635	0.1660	0.1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841	-0.9	
0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119	-0.8	p = 2 * 0.41 = 0.82
0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420	-0.7	
0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743	-0.6	If α = 0.05, what does this result tell us?
0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085	-0.5	$\mu \alpha = 0.00$, what uses this result tell us?
0.3121	0.3156	0.3192	0.3228	0.3264	0.3300	0.3336	0.3372	0.3409	0.3446	-0.4	We fail to reject the null hypothesis: the date do not
0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	0.3783	0.3821	-0.3	, We fail to reject the null hypothesis; the data do not
0.3859	0.3897	0.3936	0.3974	0.4013	0.4052	0.4090	0.4129	0.4168	0.4207	-0.2	^J provide convincing evidence of a difference between
0.4247	0.4286	0.4325	0.4364	0.4404	0.4443	0.4483	0.4522	0.4562	0.4602	-0.1	
0.4641	0.4681	0.4721	0.4761	0.4801	0.4840	0.4880	0.4920	0.4960	0.5000	-0.0	Duke students and Americans.
[*] For Z	≤ -3.5	0, the pr	obabilit	y is less	than or	equal to	0.0002.				

Practice

6.22 Sleep deprivation, CA vs. OR, Part I. According to a report on sleep deprivation by the Centers for Disease Control and Prevention, the proportion of California residents who reported insufficient rest or sleep during each of the preceding 30 days is 8.0%, while this proportion is 8.8% for Oregon residents. These data are based on simple random samples of 11,545 California and 4,691 Oregon residents. Calculate a 95% confidence interval for the difference between the proportions of Californians and Oregonians who are sleep deprived and interpret it in context of the data.²⁵

6.24 Sleep deprivation, CA vs. OR, Part II. Exercise 6.22 provides data on sleep deprivation rates of Californians and Oregonians. The proportion of California residents who reported insufficient rest or sleep during each of the preceding 30 days is 8.0%, while this proportion is 8.8% for Oregon residents. These data are based on simple random samples of 11,545 California and 4,691 Oregon residents.

- (a) Conduct a hypothesis test to determine if these data provide strong evidence the rate of sleep deprivation is different for the two states. (Reminder: Check conditions)
- (b) It is possible the conclusion of the test in part (a) is incorrect. If this is the case, what type of error was made?

6.22 Before calculating the confidence interval we should check that the conditions are satisfied.

- 1. Independence: Both samples are random, and 11,545 < 10% of all Californians and 4,691 < 10% of all Oregonians, therefore how much one Californian sleeps is independent of how much another Californian sleeps and how much one Oregonian sleeps is independent of how much another Oregonian sleeps. In addition, the two samples are independent of each other.
- 2. Success-failure:

$$11,545 \times 0.08 = 923.6 > 10 \qquad 11,545 \times 0.92 = 10621.4 > 10$$
$$4,691 \times 0.088 = 412.8 > 10 \qquad 4,691 \times 0.912 = 4278.2 > 10$$

Since the observations are independent and the success-failure condition is met, $\hat{p}_{CA} - \hat{p}_{OR}$ is expected to be approximately normal. A 95% confidence interval for the difference between the population proportions can be calculated as follows:

$$(\hat{p}_{CA} - \hat{p}_{OR}) \pm z^{\star} \sqrt{\frac{\hat{p}_{CA}(1 - \hat{p}_{CA})}{n_{CA}} + \frac{\hat{p}_{OR}(1 - \hat{p}_{OR})}{n_{OR}}} = (0.08 - 0.088) \pm 1.96 \sqrt{\frac{0.08 \times 0.92}{11,545} + \frac{0.088 \times 0.912}{4,691}} = -0.008 \pm 0.009 = (-0.017, 0.001)$$

We are 95% confident that the difference between the proportions of Californians and Oregonians who are sleep deprived is between -1.7% and 0.1%. In other words, we are 95% confident that 1.7% less to 0.1% more Californians than Oregonians are sleep deprived.

(a) The hypotheses are:

$$H_0: p_{CA} = p_{OR}$$
$$H_A: p_{CA} \neq p_{OR}$$

We have confirmed in Exercise ?? that the independence condition is satisfied but we need to recheck the success-failure condition using \hat{p}_{pool} and expected counts.

$$success_{CA} = n_{CA} \times p_{CA} = 11,545 \times 0.08 = 923.6 \approx 924$$

$$success_{OR} = n_{OR} \times p_{OR} = 4,691 \times 0.088 = 412.8 \approx 413$$

$$\hat{p}_{pool} = \frac{success_{CA} + success_{OR}}{n_{CA} + n_{OR}} = \frac{924 + 413}{11,545 + 4,691} = \frac{1,337}{16,236} \approx 0.0821 - \hat{p}_{pool} = 1 - 0.082 = 0.918$$

$$11,545 \times 0.082 = 946.69 > 10 \qquad 11,545 \times 0.918 = 10598.31 > 10$$

$$4,691 \times 0.082 = 384.662 > 10 \qquad 4,691 \times 0.918 = 4306.338 > 10$$

Since the observations are independent and the success-failure condition is met, $\hat{p}_{CA} - \hat{p}_{OR}$ is expected to be approximately normal. Next we calculate the test statistic and the p-value:

$$Z = \frac{(\hat{p}_{CA} - \hat{p}_{OR}) - (p_{CA} - p_{OR})}{\sqrt{\frac{\hat{p}_{pool}(1 - \hat{p}_{pool})}{n_{CA}} + \frac{\hat{p}_{pool}(1 - \hat{p}_{pool})}{n_{OR}}}}$$
$$= \frac{(0.08 - 0.088) - 0}{\sqrt{\frac{0.082 \times 0.918}{11,545} + \frac{0.082 \times 0.918}{4,691}}}$$
$$= \frac{-0.008}{0.00475} = -1.68$$

 $p - value = P(|\hat{p}_{CA} - \hat{p}_{OR}| > 0.008 \mid (p_{CA} - p_{OR}) = 0) = 2 \times P(|Z| > 1.68) = 2 \times 0.0465 = 0.093$

Since the p-value > α (use $\alpha = 0.05$ since not given), we fail to reject H_0 and conclude that the data do not provide strong evidence that the rate of sleep deprivation is different for the two states.

(b) Type II, since we may have incorrectly failed to reject H_0 .

6.24

• Population parameter: $(p_1 - p_2)$, point estimate: $(\hat{p}_1 - \hat{p}_2)$

- Population parameter: $(p_1 p_2)$, point estimate: $(\hat{p}_1 \hat{p}_2)$
- Conditions:

- Population parameter: $(p_1 p_2)$, point estimate: $(\hat{p}_1 \hat{p}_2)$
- Conditions:
 - independence within groups
 - random sample and 10% condition met for both groups
 - independence between groups
 - at least 10 successes and failures in each group
 - if not \rightarrow randomization (Section 6.4)

- Population parameter: $(p_1 p_2)$, point estimate: $(\hat{p}_1 \hat{p}_2)$
- Conditions:
 - \circ independence within groups
 - random sample and 10% condition met for both groups
 - independence between groups
 - at least 10 successes and failures in each group
 - if not \rightarrow randomization (Section 6.4)

$$SE_{(\hat{p}_1 - \hat{p}_2)} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

- for CI: use \hat{p}_1 and \hat{p}_2
- for HT:

• when
$$H_0: p_1 = p_2:$$
 use $\hat{p}_{pool} = \frac{\# suc_1 + \# suc_2}{n_1 + n_2}$

• when H_0 : $p_1 - p_2 =$ (some value other than 0): use \hat{p}_1 and \hat{p}_2 - this is pretty rare

Reference - standard error calculations

	one sample	two samples
mean	$SE = \frac{s}{\sqrt{n}}$	$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
proportion	$SE = \sqrt{\frac{p(1-p)}{n}}$	$SE = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

Reference - standard error calculations

	one sample	two samples
mean	$SE = \frac{s}{\sqrt{n}}$	$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
proportion	$SE = \sqrt{\frac{p(1-p)}{n}}$	$SE = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

 When working with means, it's very rare that σ is known, so we usually use s.

Reference - standard error calculations

	one sample	two samples
mean	$SE = \frac{s}{\sqrt{n}}$	$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
proportion	$SE = \sqrt{\frac{p(1-p)}{n}}$	$SE = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

- When working with means, it's very rare that σ is known, so we usually use s.
- When working with proportions,
 - if doing a hypothesis test, *p* comes from the null hypothesis
 - if constructing a confidence interval, use \hat{p} instead