Intro to Coding with
Python-Classes Pt 3

Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.i

https://jcrouser.github.io/

* Recap classes

* Object-Oriented Programming
» Child classes

* Inheritance

Plan for Today

N @A\
class

definitions
(“blueprints”)

Image courtesy Dominique Thiebaut, Smith College

* Define an Artist class

« An Artist should have the attributes:
* name

* birth year
- death year

* An Artist should have the method:
- print_info that prints:
- “Artist: <name>, born: < birth year>" if the
artist is alive and

* “"Artist: <name>, < birth year> - <death year>" if
the artist is dead

10 Minute
activity:

Artist
class

class Artist:

def __init_ (self, name='None', birth_year=0, death_year=0):
COdIng the ::gjail::hjyg:Te: birth_year
ArtiSt self.death_year = death_year

def print_info(self):

class

if self.death_year == -1:
print('Artist: {}, born {}'.format(self.name, self.birth_year))
else:

print('Artist: {} ({}-{})'.format(self.name, self.birth_year, self.death_year))

class Artist:

def __init_ (self, name='None', birth_year=0, death_year=0):

. self.name = name
COdIng the self.birth_year = birth_year

= self.death_year = death_year the
Ar tl s t constructor
l def print_info(self):
c ass if self.death_year == -1:
print('Artist: {}, born {}'.format(self.name, self.birth_year))
else:

print('Artist: {} ({}-{})'.format(self.name, self.birth_year, self.death_year))

class Artist:

def __init_ (self, name='None', birth_year=0, death_year=0):
self.name = name

COdlng the self.birth_year = birth_year

= self.death_year = death_year
Artist - -
l def print_info(self): attributes
c ass if self.death_year == -1:
print('Artist: {}, born {}'.format(self.name, self.birth_year))

else:
print('Artist: {} ({}-{})'.format(self.name, self.birth_year, self.death_year))

default values

class Artist:

def __init_ (self, name='None', birth_year=0, death_year=0):
- self.name = name
COdIng the self.birth_year = birth_year
= self.death_year = death_year
Artist

def print_info(self):

class

if self.death_year == -1:
print('Artist: {}, born {}'.format(self.name, self.birth_year))
else:

print('Artist: {} ({}-{})'.format(self.name, self.birth_year, self.death_year))

class Artist:

def __init_ (self, name='None', birth_year=0, death_year=0):
COdlng the self.nz?\me = name .
self.birth_year = birth_year

= self.death_year = death_year

Artist - -
l def print_info(self):

c ass if self.death_year =¥/
print('Artist: {}, born {}'.format(self.name, self.birth_year))

else:
print('Artist: {} ({}-{})'.format(self.name, self.birth_year, self.death_year))

method

if _name__ == "__main__":

. user_artist_name = input()
Creatlng ain user_birth_year = int(input())
- user_death_year = int(input())
ArtlSt user_title = input()
instance user_year_created = int(input())

user_artist = Artist(user_artist_name, user_birth_year, user_death_year)

Lots of

possible
Artists

class Artist:

def __init_ (self, name='None', birth_year=0, death_year=0):

lf. =
All from the celt-birth_year = birth_year

self.death_year = death_year

same
blueprint

def print_info(self):

if self.death_year == -1:
print('Artist: {}, born {}'.format(self.name, self.birth_year))
else:

print('Artist: {} ({}-{})'.format(self.name, self.birth_year, self.death_year))

Inheritance

Motivation

* Write a class called Dog, with a constructor that takes
10 Minute in the following parameters:

exercise: the
Dog class name (the dog’s name)
age (the dog’s age in years)

Motivation

Dachshund GreatDane

AsS

(sub)classes

class Dog:

A class attribute (every Dog has the same value,
so no self)
species = "Canine"

def __init_ (self, name, age):
self.name = name
self.age = age

class Dachsund(Dog):

def run():
print("I'm running low to the ground!")

class GreatDane(Dog):

def leapOver(something):
print("I'm leaping over", something)

class Dog:

A class attr
so no self)

(every Dog has the same value,

species = "Canine' subclasses
“inherit’
def __init_ (self, , age): all the
self.name = name attributes
As - self.age = age and methods
(SU b)ClaS Ses class Dachsund(Dog): from their

parent class

def run():

print("I'm runn low to the ground!")

class GreatDane(Dog):

def leapOver(something):
print("I'm leaping over", something)

AsS

(sub)classes

class Dog:

A class attribute (every Dog has the same value,
so no self)
species = "Canine"

def __init_ (self, name, age):
self.name = name

self.age = age

class Dachsund(Dog):

def run(): they can also have
~ print("I'm running low to the ground!") their own
attributes

1 tD D -
class GreatDane(Dog) and methods

separate from

def leapOver(something):)
their parent

print("I'm leaping over", something)

class Dog:

A class attribute (every Dog has the same value,
so no self)

species = "Canine"

AsS

(SUb)Classes def __init_ (self, name, age):

self.name = name
self.age = age

if necessary, they can override
class RobotDog(Dog): attributes and methods

species = "Robot" from their parent

Discussion Why is this “inheritance” idea useful?

15 Minute

Activity

Return to the Playlist class you wrote for your

music li

Create a subclass, ca
Playlist wit

orary earlier.
led Radio that fills a new

n 10 random songs.

Create another subclass, called Shufflelist
that has an additional method for randomly
shufflinga Playlist.

