
Intro to Coding with
Python– Classes Pt 2
Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/)

https://jcrouser.github.io/

Plan for Today
�Object-Oriented Programming

� Big idea
� recap classes
� public vs private

Remember
back to the
very
beginning…

Imperative
(“procedural”)
programming

�Program is structured as a set of steps
(functions and code blocks) that flow
sequentially to complete a task

Object-
oriented
programming
(“OOP”)

�Program is structured as a set of objects (with
attributes and methods) that group together
data and actions

Comparison:
pros and cons

Object-oriented

(a.k.a. “OOP”)

Imperative

(a.k.a. “procedural”)

Comparison :
pros and cons

Object-oriented

(a.k.a. “OOP”)

+ more organized (logically)

+ matches the real world

+ easier to test / debug

+ easier to reuse code

- more “overhead” (need to plan
out further in advance)

- harder to learn

- overkill for small tasks

Imperative

(a.k.a. “procedural”)

+ easy to learn and implement

+ only need to think a few steps
ahead

+ much more straightforward

- can be hard to follow returns

- have to pass stuff around

- gets “unwieldy” / “clunky”

- hard to test / debug

CO
N

S

PR

O
S

Imperative
(“procedural”)
programming

�Program is structured as a set of steps
(functions and code blocks) that flow
sequentially to complete a task

You are writing the code for
an ATM using imperative

programming. What steps
does your program follow for

a deposit?

Object-
oriented
programming
(“OOP”)

�Program is structured as a set of objects (with
attributes and methods) that group together
data and actions

You are writing the code for
an ATM using object-oriented
programming. What classes

and methods does your
program need for a deposit?

RECAP:
class
definitions
(“blueprints”)

Image courtesy Dominique Thiebaut, Smith College

attributes

m
e
t
h
o
d
s
(
)

From a
blueprint, we
can make
instances

Coding the
Die class

Coding the
Die class

the
constructor

Coding the
Die class

attributes

Coding the
Die class

methods

What happens
if I run this
program?

Using the class

Creating Die
instances

call the constructor

Lots of
possible Die
instances

they don’t all
have the same

attributes

All from the
same
blueprint

class
definition vs.
instance

…make sense?

Lingering
question

“Why can’t I just access
attributes directly?”

Think back to
our ATM
example

Can you imagine any attributes/methods
you might want to be private?

print(account.pin)

public vs.
private

�python methods/attributes are
public by default this means that they can be accessed
from outside the instance… by anyone (for better or for worse)

�To make a method/attribute private
(i.e. accessible only within the instance
itself), prefix it with a double underscore (_ _)

15-minute
exercise

� Create a class to represent CAIS 117 (students, time,
place, grades, etc.)

� Which attributes should be private and which should be
public?

� Once you have your class, write a program that makes
an instance of that class and prints that names of
everyone in class

Big takeaways

� Object-oriented programming is a powerful paradigm

� It’s also very common (and therefore useful to learn)

� The more complex your problem, the more it makes
sense to organize your code this way

� In Python, it isn’t all or nothing: some parts of your
program might be object-oriented, others might be
procedural

� The important part is that your code makes sense

