
Intro to Coding with
Python– Recursion Pt 2
Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/)

https://jcrouser.github.io/

Plan for Today

� Tough problems, simple solutions

� More Recursion & Recursive Functions
� Finding the Largest in a List
� Finding the Smallest in a List
� Traversing a Maze
� Fractal Trees

Basic structure
of a recursive
algorithm

� A base case: what to do in the simplest possible case
(i.e. when you have a single disk)

� A recursive step: break the original problem into one
or more smaller problems, and solve that (saving the
intermediate result)

Recursion
themes

� “Looping without a loop”

� “A function that calls itself as part of its definition”

� “Solving a problem by solving smaller instances”

� Key components of all three:
� a recursive step (i.e. knowing when to split)
� a “base case” (i.e. knowing when to stop)

Recap:
recursive
functions
(Hanoi)

Recap:
recursive
functions
(Hanoi)

Discussion
What actually happens in memory

when you call a function?

the “stack”

the program
def f1(a):

 y = f2(a+1)

 return y

def f2(b):

 z = b

 if (z > 2):

 z = z/2

 return b^2

f1(3)

in memory

the “stack”

the program
def f1(a):

 y = f2(a+1)

 return y

def f2(b):

 z = b

 if (z > 2):

 z = z/2

 return b^2

f1(3)

in memory

the “stack”

the program
def f1(a):

 y = f2(a+1)

 return y

def f2(b):

 z = b

 if (z > 2):

 z = z/2

 return b^2

f1(3)

in memory

f1(3): y

the “stack”

the program
def f1(a):

 y = f2(a+1)

 return y

def f2(b):

 z = b

 if (z > 2):

 z = z/2

 return b^2

f1(3)

in memory

f1(3): y

the “stack”

the program
def f1(a):

 y = f2(a+1)

 return y

def f2(b):

 z = b

 if (z > 2):

 z = z/2

 return b^2

f1(3)

in memory

f1(3): y

f2(4): z

the “stack”

the program
def f1(a):

 y = f2(a+1)

 return y

def f2(b):

 z = b

 if (z > 2):

 z = z/2

 return b^2

f1(3)

in memory

f1(3): y

the “stack”

the program
def f1(a):

 y = f2(a+1)

 return y

def f2(b):

 z = b

 if (z > 2):

 z = z/2

 return b^2

f1(3)

in memory

…whatever’s next!

Discussion
What actually happens in memory

when you call a function

recursively?

the “stack”

the program

def f3(a):

 if (a == 1):

 return 1

 else:

 x = f3(a-1)+1

f3(100)

in memory

f3(100): x

f3(99): x

f3(98): x

f3(97): x

…

…but isn’t there limited space?

Demo:
recursive
addition

Recursive vs.
iterative
addition

in this case,
the iterative solution

feels cleaner

Discussion

How would you solve Tower of Hanoi iteratively?

More
problems with
recursive
solutions

15 minute (non-
programming) Challenge:

How would you program a
robot to solve a maze?

A recursive
solution

1. Mark your current location as visited

2. If you’re at the end, you’re done!

3. If not:
a. If unmarked, go NORTH, solve maze. If not solved, go back and:
b. If unmarked, go SOUTH, solve maze. If not solved, go back and:
c. If unmarked, go EAST, solve maze. If not solved, go back and:
d. If unmarked, go WEST, solve maze. If not solved, NO SOLUTION

Clever
recursion
allows
backtracking!

1. Mark your current location as visited

2. If you’re at the end, you’re done!

3. If not:
a. If unmarked, go NORTH, solve maze. If not solved, go back and:
b. If unmarked, go SOUTH, solve maze. If not solved, go back and:
c. If unmarked, go EAST, solve maze. If not solved, go back and:
d. If unmarked, go WEST, solve maze. If not solved, NO SOLUTION

