
Intro to Coding with 
Python– Recursion Pt. 1
Dr. Ab Mosca (they/them) 

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/) 

https://jcrouser.github.io/


Plan for Today
� Motivating example: Towers of Hanoi

� Tough problems, simple solutions



Towers of 
Hanoi � Move the tower from A to C

� You can only move one disk at a time

� You can only move a disk to a pole where it will be the 
smallest (i.e. you can’t put a disk on top of a larger one)

� You can only remove the smallest disk from a pole (i.e. 
you can’t lift up the stack to get a larger disk from 
below)



Discussion
Did you solve it?

Notice any patterns?



Recursive 
Towers suppose we 

can solve this
subproblem

What if we re-frame the problem this way?



Recursive 
Towers

Solved!



Recursive 
Towers

Now, move this
disk



Recursive 
Towers



Recursive 
Towers

solve this
subproblem 

again



Recursive 
Towers



Recursive 
Towers solve this

subproblem

Back to this subproblem. We can think about it 
the same way



Recursive 
Towers

solve this
subproblem



Recursive 
Towers



move this
disk

Recursive 
Towers



Recursive 
Towers



Recursive 
Towers

solve this
subproblem



Recursive 
Towers

…and so on!



Discussion
Try the towers again. Start with one disk, then 2, 

then 3, …

How many moves does it take to solve each 
version?



Algorithmic 
analysis

nDisks nMoves

1 1

2 3

3 7

4 15

5 31

6 64

7 127

Notice any

patterns?

𝑛𝑀𝑜𝑣𝑒𝑠 = 2!"#$%$ − 1



Basic structure 
of a recursive 
algorithm

� A base case: what to do in the simplest possible case 
(i.e. when you have a single disk)

� A recursive step: break the original problem into one 
or more smaller problems, and solve that (saving the 
intermediate result)



Demo: Towers 
of Hanoi in 
Python


