Intro to Coding with
Python- Dictionaries

Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.i

https://jcrouser.github.io/

* No class this Friday — review material

* Dictionaries
* motivation

- defining a dictionary
- converting multiple lists €—> dictionaries

Plan for Today

Write a program that:

* asks the user to input () names one at atime

Recap: 15-

minute - adds each new name to a list called £friends

exercise - and after each new name is added prints the list in

alphabetical order

The program should loop until the user types "DONE”

* Imagine we want to use the previous exercise to create
a contact list. Could do it with multiple lists:

00 *Untitled*
def main(Q):

instruction = "ADD"

friends = []

numbers = []

while (instruction != "DONE"):

Motivation

Get information about new contact
friends.append(input("Name? "))
numbers .append(input("Number? "))

Ask for next instruction
instruction = input("ADD or DONE?")

if __name__ == "__main()__":
main()

Ln:9 Col: 15

* If we want to access the data later:

[NON] *Untitled*
print(friends[@]) # Joe
print(numbers[@]) # 413-286-3712

print(friends[1]) # Ali
print(numbers[1]) # 972-272-2782

print(friends[2]) # Clio
MOtivation print(numbers[2]) # 291-288-2897
Ln: 8 Col: 32

* Or worse, modify it...

[JON) *Untitled*
print(friends.pop(1)) # Bye,
print(numbers.pop(1)) # Ali!|

Ln: 2 Col: 28

Motivation

* If we want to access the data later:

0@ *Untitled*

print(friends[@]) # Joe
print(numbers[@]) # 413-286-3712

print(friend
print(numbers

L

972-272-2782

Clio
291-288-2897

print(friends
print(numbers

* Or worse, modify it.\

[NON] *Untitled*

Ln: 8 Col: 32

print(friends.pop(1)) # Bye,
print(numbers.pop(1)) # Ali!|

Ln: 2 Col: 28

What we really

want

- Each name should “map” to the corresponding number:

“Joe” = “413-286-3712"
“WAli” > N“N972-272-2782"
“Clio” = “291-288-2897"

- That way, we could access the number using the name:

contacts[“Joe”] # “413-286-3712"

- 1ists were ordered sets of objects, and we
accessed their contents via position (index)

dictionaries are unordered sets, and we
can access their contents via keys

Introducing:

dictionaries - We declare them using {...} < “curly
braces” like this:

contacts = {}

00 *Untitled*

def main():

instruction = "ADD"
contacts = {}

while (instruction !'= "DONE"):
Get information about new contact
new_friend = input("Name? ")

CO nta Cts ta ke new_number = input("Number? ")

p) # Add contact to dictionary
contacts[new_friend] = new_number

Ask for next instruction
instruction = input("ADD or DONE?")

if __name__ == "__main()__":
main()

‘ Ln: 18 Col: 10 ’

@00 *Untitled*
def main(Q):

instruction = "ADD"
contacts = {}

while (instruction != "DONE"):
Get information about new contact
new_friend = input("Name? ™)

ContaCtS ta ke new_number = input("Number? ")

2 # Add contact to dictionary
contacts[new_friend] = new_number

Ask for next instruction
instruction = input("ADD or DONE?")

it __name__ == "__main()__":
main()

Ln: 18 Col: 10

00 *Untitled*
def main(Q):

instruction = "ADD"
contacts = {}

while (instruction != "DONE"):
Get information about new contact
new_friend = input("Name? ")

Contacts: take ST [

p) # Add contact to dictionary
contacts[new_friend] = new_number

Ask for next instruction
instruction = input("ADD or DONE?")

it __name__ == "__main()__":
main()

Ln: 18 Col: 10

[NON) *Untitled*

def main(Q):

instruction = "ADD"
contacts = {}

while (instruction != "DONE"):
Get information about new contact
new_friend = input("Name? ™)

ContaCtS ta ke new_number = input("Number? ™)

2 # Add contact to dictionary
contacts[new_friend] = new_number

Ask for next instruction
instruction = input("ADD or DONE?")

if __name__ == "__main(Q__":
main()

Ln: 18 Col: 10

Interesting

dilemma

What happens when we iterate over a
dictionary?

@ O @ *demo10.py - /Users/jcrouser/G...
for ¢ in contacts:
print(c)

Ln: 1 Col: 6

* If you want to get a list of the keys ina
dictionary

@® *demo10.py - /Users/jcrouser/Google Drive/Teaching/Course M...
orint(contacts.keys())
methOdS: # ["Joell, "A'I-_i-", IIC'I-_i-O"]

.keys ()

dictionary

Ln: 1 Col: 1
eSS

*If you want a 1ist of the valuesin a
dictionary

@® *demo10.py - /Users/jcrouser/Google Drive/Teaching/Course M...

dictionary bri nt(contacts.values())
["413-286-3712",
"972-379-2782",

methods:
.values () # "297-288-2897"] ‘

Ln: 4 Col: 19

*If you want a 1ist of the key, value pairsin
adictionary

@® *demo10.py - /Users/jcrouser/Google Drive/Teaching/Course Materi...

dictionary key, value contacts.items():
print(Ckey, value)

methods:

: 1tems () T

Ln: 2 Col: 21

* If you want to copy the dictionary :

@® *demo10.py - /Users/jcrouser/Google Drive/Teaching/Course Ma...

contacts = {"Joe" :"413-286-3712",
dlctlonary "AL1" :"972-379-2782",

methods: "Clio":"297-288-2897"
.copy () contacts? = contacts.copy()

Ln: 5 Col: 25
: just like with

alist

The
function

()

* If you want to combine two 1ists into one
dictionary, use a comprehension and
the zip (..) function:

[NON | *Untitled*

names = ["Joe", "ALi", "Clio"]

numbers = ["413-286-3712",
"Q72-272-2782",
"291-288-2897"]

contacts = {name:number for name, number in zip(names, numbers)}

Ln: 7 Col: 35

- s.l..l..!.‘..l..!.‘..!.!.l.l..!.l.lllllllllllUllllll!l'!!'II!H

SAREEREERERRRRRRRR

-~

- strings: immutable ordered collections of
characters

- 1ists: mutable ordered collections of objects

-dictionaries: mutable unordered collections of
objects

* Write a program that ...
* Asks the user "ADD or DONE? "
* If the user says ADD

- Take user input to creates a contact book entry
that includes (1) name, (2) number, and (3)

15 minute address |
: * Ask "ADD or DONE? " again
EXErcISe * If the user says DONE

* Quit and print "X’s numberisY and they live at
Z" for each entry in the contact book

