
Intro to Coding with
Python– Documentation
and Debugging
Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/)

https://jcrouser.github.io/

Plan for Today
�Documenting code

�Tracing code

�Debugging

Big Picture

� Other people need to be able to understand your code

� Future you needs to be able to understand your code

The point

� Other people need to be able to understand your code

� Future you needs to be able to understand your code

… but how?

The point

� Other people need to be able to understand your code

� Future you needs to be able to understand your code

� Document it

… but how?

Step 1:
meaningful
nouns for
variables

Step 1:
meaningful
nouns for
variables

Step 2: lots of
comments

A useful
technique:
code tracing

�Given: a very short, poorly-documented program

�Your goal: try to figure out what it’s doing

�Recommendations:
� walk through the program step-by-step (“trace its

execution”) using the whiteboard or paper instead
of running lines

� once you understand what’s happening, then rewrite
it using informative variable names and comments

Example

Step 3*:
describe the
action for
functions

Step 3*:
describe the
action for
functions

Step 3*:
describe the
action for
functions

Step 3*:
describe the
action for
functions

Step 4*:
docstrings

Debugging

RECAP: the
programming
process

D. Thiebaut, Computer Science, Smith College

The Programming Process

• Analyze the Problem

• Determine Specifications

• Create a Design

• Implement

• Test & Debug

• Maintain

iterate
many times

Refine the

Fun history:
the term
“debug”

RDML Grace M. Hopper
b.1906 – d.1992

Some
problems are
obvious

this is called
an Exception

Some
problems are
obvious

this kind of error gives you
a clue about what the problem is

Some
problems are
obvious

it also tells you where the problem is
(but be careful!)

Common
Exceptions

� NameError: raised when Python can’t find the thing
you’re referring to (a variable or a function)

Common
Exceptions

� TypeError: raised when you try to perform an
operation on an object that’s not the right type (i.e. a
string instead of a number)

Common
Exceptions

� IndexError: raised when you try to use an index
that’s out of bounds

Common
Exceptions

� SyntaxError: raised when you try to run a
command that isn’t a valid Python statement

Common
Exceptions

� SyntaxError: also raised if your indentation is
messed up (this is a special kind of SyntaxError
called an IndentationError)

Common
Exceptions

� ZeroDivisionError: raised when you try to divide
by zero (or do modular arithmetic with zero)

Less common
Exceptions

Did your program throw an Exception not listed here?

Look it up at:

https://docs.python.org/3/library/exceptions.html

Exceptions
= relatively
easy to fix

Why would I say that?

What’s the alternative?

Logical errors

� Mistakes in the reasoning behind the code (though the
statements are valid and there are no Exceptions),
e.g.

perfectly valid
(just not what we wanted)

Logical errors

� Mistakes in the reasoning behind the code (though the
statements are valid and there are no Exceptions),
e.g.

what we were
actually going for

An analogy

Syntactic Error

Their is no
reason to be
concerned.

Logical Error

If an animal is
green, it must

be a frog.

Discussion How do you find and fix logical errors?

Step 1: map
out the code

� It is impossible to debug code that you don’t
understand (and it’s possible to not understand code even if
you wrote it!)

� It’s often helpful to map out how the code fits together:

main()

printHello()

printGoodbye()

Step 2: “rubber
ducking”

� Still stuck? Try explaining it to someone else
(or historically, to a rubber duckie)

� This is the debugging equivalent of pair programming

“Okay, so first we
are going to round() the

user’s input and then
...oh wait…

I think maybe the problem is
that I forgot to eval() the

input first, so it’s
still a string!

Step 3: add
print()
statements

� Not sure exactly where things are going wrong?

� Add print() statements to leave a “trail” on the
console

Step 3: add
print()
statements

� Not sure exactly where things are going wrong?

� Add print() statements to leave a “trail” on the
console

Step 3: add
print()
statements

� Not sure exactly where things are going wrong?

� Add print() statements to leave a “trail” on the
console

Takeaways

�There are lots of other techniques for both dealing
with and preventing bugs

�The most important part is to understand:
� what the code is trying to do
� what the code is actually doing

�Tips:
� change one thing at a time
� keep track of what you change!

Activity: “code
detective”

ic03

