
Intro to Coding with 
Python– Functions
Dr. Ab Mosca (they/them) 

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/) 

https://jcrouser.github.io/


Plan for Today

� Functions
� basic components
� definition vs. call
� an analogy
� parameters
� returning values 



Functions

�Recall: a function is a procedure / routine that 
takes in some input and does something with it 
(just like in math)

�We’ve seen lots of built-in functions:
� print(…)
� input(…)
� eval(…)
� round(…)

�Perhaps unsurprisingly, Python lets us write 
custom functions as well



Basic 
components of 
a function



Basic 
components of 
a function

a name

Convention: use _underscores_ or camelCase



Basic 
components of 
a function

which is defined 
using the def keyword



Basic 
components of 
a function

a body
(indented)



Basic 
components of 
a function a return (optional)



A “function 
definition”



Discussion

What happens if we run this program?



A “function 
definition” is a 
description

(but not a directive)



Function calls: 
“hey, Python! 
do this”

a function call



Function calls: 
“hey, Python! 
do this” 5



An analogy

functions are your MINIONS



An analogy

functions have NAMES



An analogy

they only work when you CALL them



An analogy

main()

stuart()

functions 
can be 

called by 
main()



An analogy

main()

stuart()

functions 
can also be 

called by 
one another

jerry()



Two kinds of 
functions

Some functions always               
do the same thing



Two kinds of 
functions

Some functions always               
do the same thing



Two kinds of 
functions

Some functions always               
do the same thing

Others adjust their behavior  
based on what we give them



Two kinds of 
functions

Some functions always               
do the same thing

Others adjust their behavior  
based on what we give them



Two kinds of 
functions

Some functions always               
do the same thing

Others adjust their behavior  
based on what we give them

“parameter”



Two kinds of 
functions

Some functions always               
do the same thing

Others adjust their behavior  
based on what we give them

“parameter”



15-minute 
exercise: 
Happy 
Birthday

� Write a function named happyBirthday that 
takes in a string, name, and prints out the lyrics to 
the song ”Happy Birthday” with the name inserted:

Happy birthday to you! 
Happy birthday to you!
Happy birthday, dear NAME
Happy birthday to you!

� Use input(…) to get the user’s name, and then 
call your function with the user’s name to print their 
happy birthday song



Parameters

� Functions can be defined to take in multiple
parameters:

�Result:

T-u-e-s-d-a-y

word = “Tuesday”
char = “-”



Default 
parameters

�We can include a “default” value for some (or 
all) of them:

�Result:

T*u*e*s*d*a*y

only one parameter



Returning 
values

�We may want to return the results rather than 
print them:

the results of the return in 
emphasize() are stored in boom



Advanced: 
chaining 
functions

�Return values allow us to call functions inside
other function calls:



Recap: 
functions

� If you have to do something multiple times, then you 
probably want a function: this helps to “modularize” 
code (i.e. organize it for easy reuse)

� Define once, call as many times as necessary

� Naming convention: verb, what the function does

� Important: one function = one task


