Intro to Coding with
Python— Lists

Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/)

https://jcrouser.github.io/

* String recap

* Lists

Plan for Today * the basics
* methods

numbered boxes”

\\

=
n
(@)
S
-
)
Y
o
n
o
0
)
O
h
I
@)

€70 ZHN00Y ¥aa 89
S190 0€€0€-N00ZEDd

storing

Recap
stuff in

memory

Recap:

strings

 Collections of characters:

name = “Jordan”
~ [\JI, \OI’
0 1

* To access the letter at position 2:

name[2] = “r”

~ |: \JI , \OI ,
-6 -G
* To access the letter at position -2:

name[-2] = “a”

‘v’ ,
2

\ 4
r 4

-4

\dI’

‘d’,
-3

* Can also use negative indexing (i.e. start at the end):

‘a’,
-2

‘n’]
-1

| he
Check in There are two ways to access the last

letter in a string: what are they?

- Sometimes we want to access a specific part of the

string (more than a single letter, but less than the whole
thing)

- e.g. to access the letters in positions 3 through 5:

Recap: slicing

s = “Computer Science”

strings
s[3:6] = “put”

remember:
not inclusive

- This is called slicing

- Special slices:

s = “Computer Science”
s[:9] = “Computer”
Recap: slicing ‘\

strings

“start at the beginning”

s[10:] = “Science”

k “continue until the end”

strings are collections of characters

defined using
“ quotes

lists are collections of objects

defined using
[square brackets |

i.e. just about

anything \

lists are collections of objects

defined using
[square brackets |

listof

integers

listof

floats

3.

oy

0

./,

]/

.8]

listof

strings

[\\dOg,,, \\Cat/I, \\pig//]

Indexing a

list .
1 [\\dOgII, \\CatI/, \\plgll]

O 1 2

k just J_/
like with

strings

Indexing a

list

negative
works

too \

Weird in python, lists can contain mixed types:
thon thin
= J [1, “cat”, 7.8]

et

not allowed
In many other languages
(so be careful!)

*Remember: it's always a a good idea
variable names to be descriptive

*Because lists contain collections of
things, we'll generally label them with a

plural noun, e.g.

Naming

CO n Ve nt I O n | ® ¢ @® *demo10.py - /Users/jcrouser/Google Drive/Teaching/Cour... j
numbers = [1, 3, 6, 7]

names = ["Bob", "AlL1", "Clio"]
prices = [1.24, 2.46, 12.93]

Ln: 3 Col: 28

animals | t pig"]
Checking new_anumal (imal? ")

membership

: inList = new_animal animals
alist

animals | t pig"]
new_anumal (imal? ")

inList new_animal animals

Checking

membership

alist *Returns True if new_animalis in animals

*Returns False otherwise

Checking

animals |

length of a (len(animals))
list

Functions on
listsof

numbers

* If we want to overwrite anitemina list, we
can use indexing combined with the = operator:

® *Untitled*

animal list
(:)\/Efr\ﬂlr11:ir]SJ an (JFFiﬂ"]]_S = Ii'(:crt' , '(jcu;' , 'FTiQJ']
iteminalist animals[2] = 'rabbit’

print(animals) # ['cat', 'dog', 'rabbit']

Ln: 2 Col: 29

What happens when we try to do this

Discussion : :
with a string?

Discussion

90 @ Python 3.6.5 Shell
>>> animal = 'pig’
>>> animal[1l] = 'u
Traceback (most recent call last):

File "<pyshell#15>", 1ine 1, in <module>

animal[1l] = 'u'
TypeError: 'str' object does not support item
assignment 0

Ln: 65 Col: 4

*strings are immutable (which means
we cannot change them in memory, we
have to overwrite them completely)

*lists defined with [...] aremutable
mutable vs. (which means we can change them in

immutable memory)
if we want an immutable 1list, we can

define it with (...) instead

* If you want to add a new item to the end of a

list:

® *Untitled*

animal list
list animals = ['cat’, 'dog', 'pig']
methods: # add an element
: append () animals.append('guinea pig"')

print updated list

printCanimals)

Ln: 8 Col: 6
;.. @

*If you want to add a new item intoa listata
specific position:

© *Untitled*
vowel list

v LI |) ||

1ist vowels = ['a', 'e', "i", "u']

methOdS: # insert 'o' into list at position 3
vowels.insert(3, 'o")

.insert ()

orint("Updated List: ', vowels)

Ln: 7 Col: 30
TEEERRREEE—

* If you want to remove an item from a 1ist:

o *Untitled*

animal list

_ animal = ['cat', 'dog', 'rabbit’,
list 'guinea pig']
methOdS' # 'rabbit' element 1s removed

. remove () animal.remove('rabbit")

#Updated Animal List
print('Updated animal list:

]

, animal)

Ln: 3 Col: 10
TEEERERRREE—

* If you try to remove an item that isn't in the
list, the interpreter will throw a
ValueError:

Y Python 3.6.5 Shell
list >>> # animal list
: animal = ['cat', 'dog', 'rabbit',
methods: quinea pig']
. remove () >>> animal.remove("elephant™)
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
animal .remove("elephant™)

ValueError: list.remove(x): x not in list

Ln: 42 Col: 4
TeekeeeOLREBEBEBEERERSSSSSSSSSSSSSSSSSSSSSSSSSSSSESSSSSST

* If you want to copy the 1ist:

O *Untitled*
: # list of numbers
list numbers = [1, 2, 3, 4, 5]

methods:
. copy ()

copy 1t
numbersZ = numbers.copy()

Ln: 5 Col: 11
TEEEBEEERRREE—

* If you want to copy the 1ist:

O *Untitled*
: # list of numbers
list numbers = [1, 2, 3, 4, 5]

methods:
. copy ()

copy 1t
numbersZ = numbers.copy()

%
wait... why?

An important
note about

copying a
list

* Usually when we want to copy a string or a

number, we just say something like:

x2 = x1

- Copying a list this way, both the original and

the copy point to the same spot in memory

* This can cause some unexpected behavior...

remember when we said lists were mutable?

* Let's say we have a 1ist stored in memory:

names = [“"Ben”, “Ali”, “Clio”]
names
An important —\‘
note about ‘ “Ben” | “Ali” | “clio”

copying a
list

* Let's say we have a 1ist stored in memory:

names = [“Ben”, “Ali”, “Clio”]
names names2
An important —\‘ V/
note about ‘ “Ben” | “Ali” | “Clio”

copying a

list - And then we say names2 = names

* Let's say we have a 1ist stored in memory:

names = [“Ben”, “Ali”, “Clio”]
names names2
An important —\‘ V/
note about ‘ “Ben” | “Ali” | “Clio”
copying a
list - And then we say names2 = names

- If we then say:

names2[0] = “Joe”

* Let's say we have a 1ist stored in memory:

names = [“Ben”, “Ali”, “Clio”]
names names2
An important —\‘ V/
note about ‘ “Joe” “ali” | “Clio”
copying a
list - And then we say names2 = names

- If we then say:

names2[0] = “Joe”

* Let's say we have a 1ist stored in memory:

names = [“Ben”, “Ali”, “Clio”]
names names2
An important —\‘ V/
note about ‘ “Joe” “ali” | “clio”
copying a
list - And then we say names2 = names

- If we then say:
names2[0] = “Joe”

What happens if we then ask for names[o0]?

@ O ® *demo10.py - /Users/jcrouser/Google Drive/Teaching/Course Materi...
names = ["Joe", "Al1", "Clio"]

namesZ2 = names # points to same
place i1n memory

Recap:

copying

lists names 2 = names.copy() # list is

duplicated

Ln: 7 Col: 23

* If you want to count how many times an item
appears inthe 1list:

® *Untitled*

list # 1list of pets
pets = ['dog', 'dog', 'cat']

methods:

: count() # gount number of dogs
orint(pets.count('dog'))

Ln: 5 Col: 24
kkkekekeekekkkhLRBREBRERESSSSSESESSSSSSSSSST

*If you want to reverse the 1ist:

©) *Untitled*
1ist of numbers
list numbers = [1, 2, 3, 4, 5]
methods: # reverse it
reverse () numbers.reverse() © - 4, -, . 1

Ln: 5 Col: 34
: this changes

the original list!

list

methods:
.sort ()

* If you want to sort the 1ist:

o *Untitled*
list of names
names = ["Ben", "Ali", "Clio"]

sort it ’\

names.sort() this also changes

. ot
print it the original list!
print(names)

Ln: 8 Col: 12

Write a program that:
- asks the user to input names separated by commas

creates a list with the input names

15-minute

exercise: - prints the length of the list

- prints list with the names in alphabetical order

* prints the list with the names in reverse
alphabetical order

