
Intro to Coding with
Python– Lists
Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/)

https://jcrouser.github.io/

Plan for Today

�String recap

�Lists
� the basics
� methods

Recap: storing
stuff in
memory

collections of things in
“numbered boxes”

Recap:
strings

� Collections of characters:

name = “Jordan”
≈ [‘J’, ‘o’, ‘r’, ‘d’, ‘a’, ‘n’]

0 1 2 3 4 5

� To access the letter at position 2:

name[2] = “r”

� Can also use negative indexing (i.e. start at the end):
≈ [‘J’, ‘o’, ‘r’, ‘d’, ‘a’, ‘n’]

-6 -5 -4 -3 -2 -1

� To access the letter at position -2:

name[-2] = “a”

Check in There are two ways to access the last
letter in a string: what are they?

Recap: slicing
strings

�Sometimes we want to access a specific part of the
string (more than a single letter, but less than the whole
thing)

� e.g. to access the letters in positions 3 through 5:

s = “Computer Science”

s[3:6] = “put”

� This is called slicing

remember:
not inclusive

Recap: slicing
strings

� Special slices:

s = “Computer Science”

s[:9] = “Computer”

s[10:] = “Science”

“start at the beginning”

“continue until the end”

Okay, so…
strings are collections of characters

defined using
“ quotes “

Okay, so…
lists are collections of objects

defined using
[square brackets]

Okay, so…
lists are collections of objects

defined using
[square brackets]

i.e. just about
anything

list of
integers

[1, 2, 3, 4, 5, 6]

list of
floats

[1.2, 3.5, 0.7, 7.8]

list of
strings

[“dog”, “cat”, “pig”]

Indexing a
list [“dog”, “cat”, “pig”]

0 1 2

just
like with
strings

Indexing a
list

-3 -2 -1

[“dog”, “cat”, “pig”]
0 1 2

negative
works

too

Weird
python thing

in python, lists can contain mixed types:

[1, “cat”, 7.8]

this is
not allowed

in many other languages
(so be careful!)

Naming
convention

�Remember: it’s always a a good idea
variable names to be descriptive
�Because lists contain collections of

things, we’ll generally label them with a
plural noun, e.g.

Checking
membership
in a list

Checking
membership
in a list �Returns True if new_animal is in animals

�Returns False otherwise

Checking
length of a
list

Functions on
lists of
numbers

Overwriting an
item in a list

� If we want to overwrite an item in a list, we
can use indexing combined with the = operator:

Discussion
What happens when we try to do this

with a string?

Discussion

mutable vs.
immutable

�strings are immutable (which means
we cannot change them in memory, we
have to overwrite them completely)
�lists defined with […] are mutable

(which means we can change them in
memory)
� if we want an immutable list, we can

define it with (…) instead

list
methods:
.append()

� If you want to add a new item to the end of a
list:

list
methods:
.insert()

� If you want to add a new item into a list at a
specific position:

list
methods:
.remove()

� If you want to remove an item from a list:

list
methods:
.remove()

� If you try to remove an item that isn’t in the
list, the interpreter will throw a
ValueError:

list
methods:
.copy()

� If you want to copy the list:

list
methods:
.copy()

� If you want to copy the list:

wait… why?

An important
note about
copying a
list

�Usually when we want to copy a string or a
number, we just say something like:

x2 = x1

�Copying a list this way, both the original and
the copy point to the same spot in memory

�This can cause some unexpected behavior…
remember when we said lists were mutable?

An important
note about
copying a
list

�Let’s say we have a list stored in memory:
names = [“Ben”, “Ali”, “Clio”]

… “Ben” “Ali” “Clio” …

names

An important
note about
copying a
list

�Let’s say we have a list stored in memory:
names = [“Ben”, “Ali”, “Clio”]

�And then we say names2 = names

… “Ben” “Ali” “Clio” …

names names2

An important
note about
copying a
list

�Let’s say we have a list stored in memory:
names = [“Ben”, “Ali”, “Clio”]

�And then we say names2 = names

� If we then say:
names2[0] = “Joe”

… “Ben” “Ali” “Clio” …

names names2

An important
note about
copying a
list

�Let’s say we have a list stored in memory:
names = [“Ben”, “Ali”, “Clio”]

�And then we say names2 = names

� If we then say:
names2[0] = “Joe”

… “Joe” “Ali” “Clio” …

names names2

An important
note about
copying a
list

�Let’s say we have a list stored in memory:
names = [“Ben”, “Ali”, “Clio”]

�And then we say names2 = names

� If we then say:
names2[0] = “Joe”

… “Joe” “Ali” “Clio” …

names names2

What happens if we then ask for names[0]?

Recap:
copying
lists

list
methods:
.count()

� If you want to count how many times an item
appears in the list:

list
methods:
.reverse()

� If you want to reverse the list:

this changes
the original list!

list
methods:
.sort()

� If you want to sort the list:

this also changes
the original list!

15-minute
exercise:

Write a program that:

� asks the user to input names separated by commas

� creates a list with the input names

� prints the length of the list

� prints list with the names in alphabetical order

� prints the list with the names in reverse
alphabetical order

