
Intro to Coding with
Python– Strings and String
Methods
Dr. Ab Mosca (they/them)

Slides based off slides courtesy of Jordan Crouser (https://jcrouser.github.io/)

https://jcrouser.github.io/

Reminder

�Your first homework is out today!

�Start early, work with 1-2 other people

�There is a how-to for GitHub Desktop on the
course website under ”Demos”

Plan for Today
�operations on strings

� accessing individual letters

�handy methods

(RECAP) Core
concept 3:
strings

� In CS, a sequence of characters that isn’t a number is called a
string

� In Python, a string is declared using quotation marks

� Strings can contain letters, numbers, spaces, and special
characters

� Example:

x = “Ab”
x = “Bass Hall”

Operations on
strings

� Concatenation: join two strings together with +, e.g.

“Ab” + “ “ + “Mosca”

� Repetition (i.e. self-concatenation): use *, e.g.

3 * “hi”

Multi-line
strings

� Problem: a string that looks ugly when you try to type it all
on one line, e.g.

desc = "This course is an introduction to co
mputer science and computer programming. The
programming language Python (Version 3) is u
sed to introduce basic programming skills an
d techniques.”

� We can use triple quotes to make a multi-line string,
e.g.

desc = ”””This course is an introduction to
computer science and computer programming.
The programming language Python (Version 3)
is used to introduce basic programming
skills and techniques.”””

Escaping
quotes

� Problem: you have a statement that contains both an
apostrophe and double quotes, e.g.

“I can’t!” he said

� What’s the issue here?
� If we try to wrap it in single quotes, Python thinks the

apostrophe should end the string:

s = ‘“I can’t!” he said’

� If we try to wrap it in double quotes, Python thinks the double
quote at the beginning of the sentence should end the string

s = ““I can’t!” he said”

Escaping
quotes

� Problem: you have a statement that contains both an
apostrophe and double quotes, e.g.

“I can’t!” he said

� Solution: protect (“escape”) special characters using a
backslash, e.g.

s = ‘“I can\’t!” he said’
or

 s = “\“I can’t!\” he said”

Accessing
individual
letters

� One way to think about a string is as a list of letters

Accessing
individual
letters

� One way to think about a string is as a list of letters:

name = “Jordan”
≈ [‘J’, ‘o’, ‘r’, ‘d’, ‘a’, ‘n’]

0 1 2 3 4 5

Accessing
individual
letters

� One way to think about a string is as a list of letters:

name = “Jordan”
≈ [‘J’, ‘o’, ‘r’, ‘d’, ‘a’, ‘n’]

0 1 2 3 4 5

� To print out the 3rd letter (position 2)?

print(name[2])

Accessing
individual
letters

� One way to think about a string is as a list of letters:

name = “Jordan”
≈ [‘J’, ‘o’, ‘r’, ‘d’, ‘a’, ‘n’]

0 1 2 3 4 5

� How would I print out the last letter?

Accessing
individual
letters

� One way to think about a string is as a list of letters:

name = “Jordan”
≈ [‘J’, ‘o’, ‘r’, ‘d’, ‘a’, ‘n’]

0 1 2 3 4 5

� How would I print out the last letter?

print(name[5])

“Slicing”
(getting a
substring)

� What about the 2nd - 5th letters (positions 1-4)?

print(name[1:5])

� What happens if we do this?

print(name[2:])

� What about this?

print(name[-2:])

up to, but
not including

15-minute
exercise

� Given this string:

� Write a short program that uses slicing to produce:

Discussion
What did you come up with?

Strings as
objects

“object-oriented”

Useful
methods for
working with
strings

� s.lower(): convert the string s to lowercase

� s.upper(): convert the string s to UPPERCASE

� s.strip(): remove whitespace from the start / end of s

� s.replace('old', 'new'): replace all occurrences
of 'old' in s by 'new'

� s.split(c): slice s into pieces using c as a delimiter

� s.join(list): opposite of split(), join the
elements in the list together using s as the delimiter, e.g.

'-'.join(['a', 'b', 'c']) # a-b-c

Fun fact
� strings in python are immutable (along with ints,
floats, bools, and a few other built-in types)

� This means that when we call a method on them, the
original isn’t modified

� Work with 1 – 2 other people to write a short program
that:

� Takes as input from the user a string
� Takes as input from the user a character (char1)
� Takes as input from the user another character (char2)
� Returns that the input string with all occurrences of

char1 replaced with char2 and in all caps15-minute
exercise

Input a string: Ab Mosca
Input a character: a
Input another character: o
OB MOSCO

